
Finite Spaces Tweaks and Twerks

Directed Reading Program Spring 2020

Lincole Jiang
Mentor: Gill Grindstaff

April 2020

1 Introduction

By definition, finite topological spaces are topological spaces defined on sets that have only finitely
many points in them. While the axioms for topological spaces were developed for principally for
infinite spaces, when applied to finite spaces, they show surprisingly intriguing properties. This
write-up accounts for some of these properties, while assuming that the reader has a basic idea
about topological spaces.

2 Finite Spaces and Partial Orders

As stated earlier in the introduction, we inherit the three axioms of general topological spaces, i.e.,
a topological space on a set X is consisted of subsets of X such that, the whole set X and the empty
set is open, the finite intersection of open sets is open, and arbitrary union of open sets is open.
However, when these definitions are tweaked a bit, they start to show interesting properties when
considering finite spaces.

2.1 Basic Properties of Finite Spaces

We first introduce a topological space by merits of Paul Alexandroff.

Definition 2.1. A topological space is A-space if the intersection of any family of open sets is
open.

Lemma 2.2. A finite space is A-space.

Proof. If a topological space is finite, it can only have possibly finitely many intersections, which
means arbitrary intersection of open sets are finite intersection of open sets, which are open under
axiom of topological spaces.

We then define some axioms for separation.

Definition 2.3. Consider a topological space (X, T ).
(i) X is T0 if for any two points of X, there is an open neighborhood of one that does not contain
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the other.
(ii) X is T1 if each point of X is a closed subset.
(iii) X is T2, or Hausdorff, if any two points of X have disjoint open neighborhoods.

Lemma 2.4. T2 =⇒ T1 =⇒ T0.

Proof. Assume that X is a topological space and Hausdorff, or T2. Then, for any two points of
X, there exist disjoint open neighborhoods containing each point. Suppose x ∈ X, then, ∀y ∈ X,
y 6= x, ∃ neighborhood V of each y s.t. x /∈ V . Take the union of such neighborhoods. Then,
{x} = X \ ∪V , which is closed. So T2 → T1.
Assume now that X is T1. Then every point of X is a closed subset. Consider x, y ∈ X, x 6= y.
Then {x} is a closed subset, and y ∈ X \ {x}, which is an open neighborhood not containing x.
This shows that T1 → T0.

We all know discrete topology in general topological spaces for a set X: they are the collection
of every subset of X. They turn out to behave quite peculiar in finite spaces.

Corollary 2.5. A finite space is T1 if and only if it has the discrete topology.

Proof. Assume that X is a finite T1 space. Then, every singleton set of X is closed. Consider x ∈ X.
Since x is T1, {y} is closed ∀y ∈ X, y 6= x. Take the union of such {y}. The axiom of topology
says that arbitrary open sets are open, which means that arbitrary closed sets are closed. In this
way, ∪{y} is closed, so {x} = X \ ∪{y} is open. This shows that X has the discrete topology.
Now assume X is a finite space with discrete topology. Then by definition, all singleton sets are
open. Moreover, for arbitrary x ∈ X, {x} is closed: the union of singleton sets {y} ∀y ∈ X, y 6= x
is open, so {x} = X \ ∪{y} is closed. This shows that X is T1.

If a finite space is T1, then it carries the discrete topology; this is not generally true for general
topological spaces: a common Hausdorff space (e.g. R2 need not carry the discrete topology, but
every singleton set is closed due to its Hausdorff property). However, the converse is true for
topological spaces in general.

2.2 Partial Order on Finite Spaces

We now introduce the partial order on finite spaces. This concept is important since it not only
gives a unique minimal basis, but also defines equivalence classes of open sets.

Definition 2.6. Let X be a finite space. For x ∈ X, define Ux to be the intersection of the open
sets that contain x. Define a relation ≤ on the set X by x ≤ y if x ∈ Uy, or, equivalently, Ux ⊂ Uy.

Lemma 2.7. The set of open sets Ux is a basis for X. Indeed, it is the unique minimal basis for X.

Proof. Let U ⊂ X, and x ∈ U be arbitrary. Then x ∈ Ux ⊂ U since Ux is the intersection of all
open sets containing x. This proves that the set of Ux is a basis.
Let B be another basis. Then, ∀ x ∈ X, ∃ a B ∈ B s.t. x ∈ B ⊂ Ux. But then ∀ B ∈ B containing
x, Ux ⊂ B. In this way, The set of Ux and B are equivalent, and this proves that the set of Ux is
the unique minimal basis.

Lemma 2.8. The relation ≤ is transitive and reflexive. It is a partial order if and only if X is T0.
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Proof. ∀ x ∈ X, Ux ⊂ Ux.
If x ≤ y, y ≤ z, then Ux ⊂ Uy and Uy ⊂ Uz. By set inclusion Ux ⊂ Uz, or x ≤ z.
First assume that X is T0 and x ≤ y and y ≤ x. Assume the contrary that x 6= y. Since X is T0,
for any two points of X, there is an open neighborhood of one not containing the other. Without
loss of generality, assume x has an open neighborhood not containing y. Since Ux is the minimal
set, y /∈ Ux, or Uy 6⊂ Ux, a contradiction to x ≤ y. Thus, x = y.
Conversely, assume X is of partial order. Then, for x, y ∈ X, x 6= y, either x, y are incomparable,
or x < y or x > y. If x, y are not comparable, then Ux, Uy would be the open sets containing each
element but not the other, which means that X is Hausdorff, or T2. By lemma 2.4, this implies
that X is T0. Without loss of generality, assume now that x < y. Then, Ux ( Uy, so Ux ⊂ Uy but
Uy 6⊂ Ux. In this way, Ux is an open set containing x but not y, and X is T0.

Lemma 2.9. A finite set X with a reflexive and transitive relation ≤ determines a topology with
basis the set of all sets Ux = {y|y ≤ x}.

Proof. This follows directly from lemma 2.7.

Proposition 2.10. For a finite set X, the topologies on X are in bijection with the reflexive and
transitive relations ≤ on X. The topology corresponding to ≤ is T0 if and only if the relation ≤ is
a partial order.

Proof. The second statement follows directly from lemmas 2.7, 2.8, and 2.9.
To prove for the first statement, assume a finite space X and its topology T and topology induced
by the reflexive and transitive relation T ′. Consider f : T −→ T ′. Since the number of open sets
remain unchanged under the reflexive and transitive relation, |T ′| = |T |. By definition, the two
topologies are in bijection with each other.

3 Continuous Maps and Homeomorphisms

For me, at the least, the most amazing thing when it comes to continuous maps and homeomor-
phisms in terms of finite spaces is that some homeomorphism classes of finite spaces can be in
bijective correspondence with some equivalence classes of matrices.
To introduce this result, we first present some lemmas.

Lemma 3.1. Consider finite spaces X, Y . A function f : X −→ Y , is continuous if and only if it
is order preserving: i.e., x ≤ y in X implies f(x) ≤ f(y) in Y .

Proof. Assume f : X −→ Y is continuous, and x ≤ y. Then, x ∈ Uy ⊂ f−1(Uf(y)), Uy being the
minimal basis in X containing y and Uf(y) being the minimal basis in Y containing f(y). In this
way, f(x) ∈ Uf(y), or f(x) ≤ f(y). Conversely, assume V ⊂ Y is open. ∀ f(y) ∈ V , then Uf(y) ⊂ V .
∀ x ∈ Uy, x ≤ y, so f(x) ≤ Uf(y) ⊂ V , and x ∈ f−1(V ). In this way, f−1(V ) = ∪Uy is open.

Lemma 3.2. A map f : X −→ X is a homeomorphism if and only if f is either one-to-one or onto.

Proof. If f is homeomorphism, then by definition it is one-to-one and onto. Assume the converse
that f is either one-to-one or onto. Since f is a map from finite set X to itself, being either one-to-one
or onto implies the other, so f is bijective. We now prove that f send open sets to open sets. Let
U be an open subset of X, suppose the contrary that f(U) is not open. Then X \ f(U) is open. By
continuity, f−1(X \ f(U)) = f−1(X) \ f−1(f(U)) = X \ U is open, which is a contradiction. Since
f is continuous, bijective, and sends open sets to open sets, f is a homeomorphism.
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Definition 3.3. Consider square matrices M =
(
ai,j

)
with integer entries that satisfy the following

properties.
(i) ai,i ≥ 1.
(ii) ai,j is -1, 0, or 1 if i 6= j.
(iii) ai,j = −aj,i if i 6= j.
(iv) ai1,is = 0 if there is a sequence of distinct indices {i1, ..., is} s.t. s > 2 and aik,ik+1 = 1 for
1 ≤ k ≤ s− 1.
We say that such matrices M and N are equivalent if there is a permutation matrix T s.t. T−1MT =
N and let M denote the set of equivalence classes of such matrices.

Theorem 3.4. The homeomorphism classes of finite spaces are in bijective correspondence with
M . The number of sets in a minimal basis for X determines the size of the corresponding matrix,
and the trace of the matrix is the number of elements of X.

4 Connectivity and Path Connectivity

It is one of the classic results of point-set topology that path connectivity implies connectivity, but
not necessarily vice versa. For finite spaces, however, this relation holds both ways.

4.1 General Topological Spaces

We first define connectivity and path-connectivity formally.

Definition 4.1. A space X is connected if it is not the disjoint union of two open, nonempty
subsets. Equivalently, X is connected if the only clopen (open and closed) subsets of X are itself
and the empty set. In addition, define an equivalence relation ∼ on X by x ∼ y if x and y are
elements of some connected subspace of X. An equivalence class under ∼ is called a component of
X.

Now we introduce some basic properties of connected spaces in general topological spaces.

Lemma 4.2. The components of X are connected, X is the disjoint union of its components, and
any connected subspace of X is contained in a component.

Proof. Since the components of X are defined as equivalence classes, they are by disjoint and their
union make up the whole of X.
To prove the third statement, let A ∈ X be a connected subspace. Assume that A is in two
components of X, C1, C2, and x1 ∈ A ∩ C1, x2 ∈ A ∩ C2. Since A is a connected space, x1 ∼ x2,
which implies that C1 = C2.

Lemma 4.3. If f : X −→ Y is a continuous map and X is connected, then f(X) is a connected
subspace of Y.

Proof. To prove the contrapositive of the statement, suppose that f(X) is not a connected subspace
of Y. Then, ∃ separating sets U , V s.t. U , V open, nonempty, U ∪ V = f(X), U ∩ V = ∅. In this
way, f−1(X) = f−1(U ∪V ) = f−1(U)∪f−1(V ) and f−1(U)∩f−1(V ) = f−1(U ∩V ) = f−1(∅) = ∅.
Since f−1(U) = {x ∈ X|f(x) ∈ f(U)} and U , V are nonempty, f−1(U), f−1(V ) are nonempty. By
continuity, since U , V are open, f−1(U), f−1(V ) are open. In this way, f−1(U), f−1(V ) separates
X, hence proved.
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Definition 4.4. Let I = [0, 1] be equipped with the usual metric topology as a subspace of Rn. It
is a connected space, so by lemma 4.2, so is its image. A map p : I −→ X is called a path from p(0)
to p(1) in X. A space X is path connected if any two points can be connected by a path. Define a
second equivalence relation ' on X by x ' y if there is a path connecting x to y. An equivalence
class under ' is a path component of X.

To answer the question about the relation between connectedness and path connectedness, we
first prove formally that a common example is in fact a connected space.

Lemma 4.5. The unit interval, I, is connected.

Proof. Assume that I is not connected. Then, I = A ∪ B with A, B open, disjoint, nonempty.
Assume without loss of generality that 0 ∈ A. Let x = inf{B} (this is valid since every bounded
subset of R has an infimum). So, x 6= 0 or x 6= 1. If x = 0, then B = {1}, which is closed, a
contradiction. If x = 0, then since 0 ∈ A, A is open in I, [0, a) ⊂ A for some a > 0, contradicting
x = infB. So, x ∈ (0, 1). If x ∈ A, then ∃ an open neighborhood with x ∈ (a, b) ⊂ A. If x ∈ B,
then ∃ an open neighborhood with x ∈ (a, b) ⊂ B. In both cases, it is a contradiction: x = infB
so I is closed.

Theorem 4.6. x ∼ y implies x ' y, but not conversely in general. i.e., for a topological space X,
if X is path connected, then it is connected; but not generally vice versa.

Proof. To prove that path connectivity implies connectivity, assume the contrary that X is path
connected but not connected. Then X = A∪B with A, B open in X, disjoint, and nonempty. Take
x ∈ A, y ∈ B. Let γ be path from x to y. Then, I = γ−1(A)∪ γ−1(B), which is disjoint, nonempty,
and open. This contradicts the fact that I is connected, and proves that I must be path-connected.
Conversely, consider S̄ = {(x, sin( 1

x )|x ∈ (0, 1]} = (S ∪ {{0} × [−1, 1]}) ⊂ R2. Famously called the
”topologist’s sine curve”, S̄ is path connected but not connected.

Lemma 4.7. The path components of X are path connected, X is the disjoint union of its path
components, and any path connected subspace of X is contained in a path component. Each path
component is contained in a component.

Proof. Similar to lemma 4.2.

4.2 Finite Spaces

We now turn our attention to finite spaces in general.

Lemma 4.8. Each Ux is connected. If X is connected and x, y ∈ X, there is a sequence of points
zi, 1 ≤ i ≤ s, s.t. z1 = x, zs = y and either zi ≤ zi+1 or zi ≥ zi+1 for i < s.

Proof. Assume Ux is separated by A and B. Without loss of generality assume x ∈ A, but then by
definition of Ux, Ux ⊂ A, which leaves B = ∅, a contradiction.
Fix x ∈ X, let A ⊂ X be a set consisted of points y that are connected to x by some sequence zi.
Since z ≤ z′ implies Uz ⊂ Uz′ , A is open. For y is not connected to x, neither is any point of Uy,
so the complement of A is open, or A is closed. x ∈ A, so A is nonempty. Since X is a connected
space and A is a nonempty clopen subset, A = X. Since the entirety of X can be reconstructed by
A, which is configured solely in terms of zis, such sequencing of points does exist.
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Lemma 4.9. If x ≤ y, then there is a path p connecting x and y.

Proof. Define a continuous map p(t) = x if t < 1 and p(1) = y. Let V be an open subset of X. If
x ∈ V and y /∈ V , then p−1(V ) = [0, 1). If y ∈ V , then p−1(V ) = I. If y ∈ V , then x ∈ Vy ⊂ U
since x ≤ y. Therefore, f−1(V ) = I.

Proposition 4.10. A finite space is connected if and only if it is path connected.

Proof. Assume X is a finite, connected topological space. By lemma 4.8, ∀ x, y ∈ X, ∃ some
sequence zi, 1 ≤ i ≤ s s.t. z1 = x, zs = y s.t. either zi ≤ zi+1 or zi ≥ zi+1. By lemma 4.9, then, x,
y are joined by a path.
The converse is true by theorem 4.6.

There is a more general condition than finiteness of a set that induces an if-and-only-if relation
between connectivity and path connectivity: local path connectivity. By definition, a space X is
locally path connected at x if for every neighborhood U of x, there is a connected neighborhood V
of x contained in V , and X is called a locally path connected space if this is true for every x ∈ X.
Finite spaces are locally path connected by lemma 4.9, so finite spaces serves as an example for
such an axiom.

5 Conclusion

Finite spaces, viewed in lens of separation axiom, continuity, and connectivity, share some char-
acteristic with general topological spaces but provide some convenience for thinking of certain
properties. Most notably, the topologies on a topological space X can be completely described by
a well-defined transitive and reflective relation, the homeomorphism classes of finite topological
spaces are in bijection with classes of matrices, and path connectivity is equivalent to connectivity
for finite spaces.
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